LF

RNDr. Soňa Tkáčiková, PhD.   SK

Email:
sona.tkacikova@upjs.sk
Homepage:
https://www.upjs.sk/LF/zamestnanec/sona.tkacikova
Faculty:
LF UPJŠ - Pavol Jozef Šafárik University in Košice Faculty of Medicine
Department:
ULBF - Department of Medical and Clinical Biophysics
Office:
Phone:
Faculty:
LF UPJŠ - Pavol Jozef Šafárik University in Košice Faculty of Medicine
Department:
ULBF - Department of Medical and Clinical Biophysics
Office:
Phone:
+421 55 234 3250
ORCID ID:
0000-0003-4457-7541
RNDr. Soňa Tkáčiková, Ph.D. is a researcher at the Department of Medical and Clinical Biophysics at the UPJŠ Medical Faculty in Košice. She is an expert in the field of chromatography as well as in the field of biological samples preparation before instrumental analysis. She has 25 years of experience working with liquid and gas chromatographs with various types of detectors - UV, fluorescent, refractometric, flame-ionization, electron capture detector, including mass spectrometers. She has experience with the development of new methods, application of published methods for laboratory needs, validation of analytical procedures, statistical processing and evaluation of measured data. She has experience in the field of metrology and, as an external collaborator of SNAS, experience with work management in accredited laboratories. She is the author or. co-author of 19 original scientific papers and professional papers published in foreign and house journals (11 in CC, WoS or Scopus), which were cited 31 times in WoS / Scopus citation indices.

Higher education and further qualification growth
First degree of higher education:
University of Pavol Jozef Šafárik, Faculty of Natural Sciences, 041 80 Šrobárova 2, Košice, ,
Second degree of higher education:
University of Pavol Jozef Šafárik, Faculty of Natural Sciences, 041 80 Šrobárova 2, Košice, 1996, Teaching of general education subjects approbation mathematics - chemistry
Third degree of higher education:
University of veterinary medicine and pharmacy in Košice, 2010, Food hygiene
Associate professor:
N, ,
Professor:
N, ,
Doctor of Science (DrSc.):
N, ,

Research /art/ teacher profile

Display details  
Selected publications

Towards prevention of ischemia-reperfusion kidney injury: Pre-clinical evaluation of 6-chromanol derivatives and the lead compound SUL-138 [elektronický zdroj] / PC Vogelaar ... [et al.]. - reviewed. In: European Journal of Pharmaceutical Sciences : official journal of the European Federation for Pharmaceutical Sciences (EUFEPS). - ISSN 1879-0720. - Roč. 168, (2022), art. no. 106033, s. [1-15]. - Acces: http://ws.isiknowledge.com/cps/openurl/service?url_ver=Z39.88-2004&rft_id=info:ut/WOS:000708663100005. 10.1016/j.ejps.2021.106033 DOI; WOS CC; CCC;

Kacírová Mária, Bober Peter, Alexovič Michal, Tomková Zuzana, Tkáčiková Soňa, Talian Ivan, - Mederová, Lenka, Bérešová Daniela, Tóth Róbert, Andrašina Igor, Kožlejová Zuzana, Kilík Róbert, Divin Radek, Sabo, Ján:Differential urinary proteomic analysis of endometrial cancer, Physiological research. 2019, no. 4, s. 483-490, IF Q, Citované 2 krát.

Semančíková Erika, Tkáčiková Soňa, Talian Ivan, Pálová Eva, Sabo Ján: Comparison of Sample Preparation Protocols for the Analysis of the Human Platelet Proteome from Whole Blood. Journal Analytical Letters.,2017, no. 9, 1521 - 1530, Citované 1 krát.

Soňa Tkáčiková, Ivan Talian, Ján Sabo: Optimisation of urine sample preparation for shotgun proteomics [elektronický zdroj] / . - Projekt: Budovanie infraštruktúry v centre excelentnosti - SEPO II 26220120039. In: Open Chemistry. - ISSN 2391-5420. - Roč. 18, č. 1 (2020), s. 850-856, online

Soňa Tkáčiková, Ján Sabo: Dentálne kompozitné výplňové materiály ako možný zdroj toxickej záťaže ľudského organizmu.

In: Česká stomatologie a Praktické zubní lékařství : časopis České stomatologické společnosti ČLS JEP=Czech dental journal. - ISSN 1213-0613. - Roč. 121, č. 2 (2021), s. 48-54. - DOI 10.51479/cspzl.2021.007


Selected projects

The researcher of the project of the European Regional Development Fund OP integrated structure 2014-2020 entitled:

Integratívna stratégia v rozvoji personalizovanej medicíny vybraných zhubných nádorových ochorenía jej vplyv na kvalitu života

Project acronymt:    LISPER

Code ITMS2014+:      313011V446

Call Code:     OPVaI-VA/DP/2018/1.2.1-08

Operational program:  Integrovaná infraštruktúra 2014 – 2020



 

 


The researcher of the APVV project in the area of Basic Research VV - A1 entitled

Inovatívna stratégia k diagnostike a terapii karcinómu prsníka na základe zmien proteómu cirkulujúcich leukocytov

Project registration number: APVV-19-0476

Project acronym    ISDITECAP

Department of Science and Technology    30108 - Onkológia

Project solution time: 01.07.2020 - 28.06.2024

The researcher of the project ACARDIO COVID 19 – Analýza kardiovaskulárnej a imunologickej odpovede pacientov po prekonaní COVID-19 so zameraním na výskum nových diagnostických markerov a terapeutických prostriedkov  

Operational program: 311000 - Operačný program Integrovaná infraštruktúra

Activity: 313AUB100001 Výskum nových diagnostických markerov a terapeutických prostriedkov s diagnózou COVID-19

Project solution time: 09/2021 - 05/2023

 The researcher of the project VEGA in the Commission for Medical and Pharmaceutical Sciences entitled

Využitie proteomickej analýzy distálnych humánnych tekutín pri stanovení ochorení čeľustno-sánkového kĺbu a pri hodnotení účinnosti liečby pomocou intra-artikulárnej aplikácie kyseliny hyalurónovej

Project registration number       1/0196/20

Project solution time: 01/2020 - 12/2022

    

Additional information

Projects
The reasearch at the Projects from EU structural funds: Name of the project: Centrum excelentnosti pre výskum faktorov ovplyvňujúcich zdravie so zameraním na skupinu marginalizovaných a imunokompromitovaných osôb (CEMIO) ITMS code of the Project: 26220120024 Call Code:OPVaV-2008/2.1/01-SORO Operational program:Výskum a vývoj Duration:01.07.2009 do 30.06.2011 Name of the project: Probiotické mikroorganizmy a bioaktívne látky naturálneho pôvodu pre zdravšiu populáciu Slovenska (PROBIO) ITMS code of the Project: 26220220104 Call code: OPVaV-2009/2.2/04-SORO Duration: 01. 03. 2011 do 28. 02. 2015 Researcher and assistant of the project manager for a project from the Structural Funds EU: Name of the project: Centrum výskumu inovatívnych terapeutických postupov molekulárnej medicíny (MolMed) ITMS code of the Project: 26220220163 Call code: OPVaV-2011/2.2/07-SORO Operational program: Výskum a vývoj Duration: 01.03.2012 do 31.12.2014
International collaboration
Charles University in Prague, Faculty of Medicine / Department of Biophysics, V Úvalu 84, 15006 Prague 5 Motol, 23/11/2016 to 25/11/2016, Erasmus +

Further information


LF
uted computational model, communication protocols, characteristics of distributed systems. Intercomputer communication, distributed synchronization algorithms, transactions, termination and deadlock detection. Consistency issues with distributed memory sharing. Distributed application environment. Reliable calculations in an environment with errors.

<_VV_> Learning outcomes

Understand the principles, basic problems and algorithms of parallel programming. Be able to implement synchronization procedures and manage and use interprocess communication. Master the basics of GPU programming. Understand the differences between parallel and distributed computational models. Master basic distributed algorithms and know how to implement them. Understand the problems of creating a distributed system environment and know how to solve them. Be able to use distributed environments in practical applications.

A 12 19.05 B 4 6.35 C 12 19.05 D 13 20.63 E 15 23.81 FX 7 11.11 63 6 14692703 B PJP ÚINF/PJP/25 Programming language Python 4 Continuous assessment with examination Lecture / Practice 1 / 2 14 / 28 (neurčené štúdium, iné N st., denná forma) L doc. RNDr. Ľubomír Šnajder, PhD. PaedDr. Ján Guniš, PhD., univerzitný docent, RNDr. Zoltán Szoplák, doc. RNDr. Ľubomír Šnajder, PhD. 02.03.2025 08.03.2025 ÚINF/PAZ1a/15 ÚINF/PAZ1a/15 - Programming, algorithms, and complexity PAZ1a - Programming, algorithms, and complexity ÚINF/SPP1a/15 ÚINF/SPP1a/15 - Programming environments in schools I SPP1a - Programming environments in schools I ÚINF/PPPy/24 ÚINF/PPPy/24 - Advanced programming in Python PPPy - Advanced programming in Python Lecture 1 14 prezenčná Practice 2 28 prezenčná 14681328 ÚINF/PAZ1a/15 PAZ1a Programming, algorithms, and complexity 14683649 ÚINF/SPP1a/15 SPP1a Programming environments in schools I 14691626 ÚINF/PPPy/24 PPPy Advanced programming in Python B 853 BASInfb British and American Studies - Computer Science L 2 present 4 1241 EraPF Erasmus - Faculty of Science L -1 present 525 FIb Physics and Informatics L 2 present 4 527 CHIb Chemistry and Informatics L 2 present 4 943 NjInfb German Language and Literature - Computer Science L 2 present 4 521 MIb Mathematics and Informatics L 2 present 4 1259 ADUIb Data Science and Artificial Intelligence L 2 present 4 816 AIb Applied Informatics L 1 present 2 531 BIb Biology and Informatics L 2 present 4 816 AIb Applied Informatics L 2 present 4 529 GIb Geography and Informatics L 2 present 4 854 SjInfb Slovak Language and Literature - Computer Science L 2 present 4 I., N present true 5011251 1 P lecturer Ján Guniš PaedDr. Ján Guniš, PhD., univerzitný docent jan.gunis@upjs.sk Slovak 5011251 2 C instructor Ján Guniš PaedDr. Ján Guniš, PhD., univerzitný docent jan.gunis@upjs.sk Slovak 5190178 3 C instructor Zoltán Szoplák RNDr. Zoltán Szoplák zoltan.szoplak@upjs.sk Slovak 5000082 4 P lecturer Ľubomír Šnajder doc. RNDr. Ľubomír Šnajder, PhD. lubomir.snajder@upjs.sk Slovak SK Slovak Slovak <_L_> Recommended literature

PILGRIM, Mark, 2011. Ponořme se do Pythonu(u) 3 [online]. Praha: CZ.NIC, z. s. p. o. ISBN 978-80-904248-2-1. Available at: https://www.nic.cz/files/edice/python_3.pdf

PIRNAT, Mike, 2015. How to Make Mistakes in Python [online]. Boston: O’Reilly Media. ISBN 978-1-4919-3447-0. Available at: https://www.dbooks.org/how-to-make-mistakes-in-python-1491934476/

STACK OVERFLOW CONTRIBUTORS, 2018. Python® Notes for Professionals [online]. B.m.: GoalKicker. Available at: https://books.goalkicker.com/PythonBook/PythonNotesForProfessionals.pdf

ROSEMAN, Mark, 2024. Modern Tk Best Practices [online]. 2024. Available at: https://tkdocs.com/

<_PA_> Conditions for completion of course

At least 50 % of the marks in the continuous assessment

A minimum of 50 % marks in the mid-term test and the final exam practical test

<_PJ_> Language, which knowledge is needed to pass the course

Slovak language, knowledge of English language is only required to read documentation of

Python.

<_SO_> Brief outline of the course

1. Introduction to the environment, basic features of Python, simple and structured data types.

2. Input, output, function definition, lambda function, generator notation, function as parameter, string formatting.

3. Control structures, iterating over data structures, context manager.

4. Exception handling and exception raising. Philosophy of exceptions in Python.

5. Working with files. Serialization and deserialization of data - json and pickle protocol. Text and binary files. Manipulation with files. Open data.

6. Object-oriented programming 1. Design of custom classes, special methods, properties, philosophy of accessing methods and attributes.

7. Object-oriented programming 2. Comparison and differences with Java. Multiple inheritance.

8. Method overloading. Static methods, abstract classes, data class.

9. Decorators, memoization, modules, packages.

10. Code validation (debugging), testing (doctest, unittest), test-driven development.

11. Parallel computing, processes, process triggering and inter-process communication (shared variable, pipe, queue).

12. Graphical program design and implementation.

<_VV_> Learning outcomes

Implement solutions to selected problems in Python using available modules. Use and implement non-trivial algorithms to solve selected problems. Use an object-oriented approach to problem solving. Program in Python in an object-oriented manner using Python specifics. Test programs. Implement parallel computing.

A 0 0.0 B 0 0.0 C 0 0.0 D 0 0.0 E 1 100.0 FX 0 0.0 1 6
14692834 B PRO1b ÚINF/PRO1b/25 Project II. 4 Evaluation Practice 52s (neurčené štúdium, iné N st., denná forma) Z RNDr. Peter Gurský, PhD. 08.04.2025 08.04.2025 ÚINF/PRO1b/15 ÚINF/PRO1b/15 - Project II. PRO1b - Project II. Practice 52s prezenčná 14681926 ÚINF/PRO1b/15 PRO1b Project II. B 10 Ib Informatics Z 3 present 5 1241 EraPF Erasmus - Faculty of Science Z -1 present 816 AIb Applied Informatics Z 3 present 5 I., N present true 3523 1 C instructor Peter Gurský RNDr. Peter Gurský, PhD. peter.gursky@upjs.sk Slovak SK Slovak Slovak <_L_> Recommended literature

The sources of information depend on the selected project.

<_PA_> Conditions for completion of course

Active participation in the project. Participating in regular project team meetings. Presentation of the results achieved in solving a specific problem. Uploading a software work. Preparation of materials for the promotion of the final work.

<_PJ_> Language, which knowledge is needed to pass the course

Slovak or english

<_PZ_> Notes

Content prerequisities:

advanced programming skills

<_SO_> Brief outline of the course

The course is realized as part of "Živé projekty" (Live projects) in cooperation with the Technical University of Košice and several software companies. Students work in a team of 4-5 members to develop, test and present a software product under the guidance of a mentor from a university or a software company.

1. Team creation and project selection takes place at the beginning of October

2. Students meet with the project mentor on a weekly basis and continuously work on the creation of a software product

3. Around mid-January, students submit a video with a short presentation of the project

4. At the beginning of February, the project presentation takes place. The best teams are awarded with material prizes.

<_VV_> Learning outcomes

Learn how to work on a larger software part at all stages of its life cycle. Be able to analyze and explicitly express user requirements, precisely specify the task, design a solution and evaluate alternatives. Implement and test an effective and correctly designed solution. Learn to keep detailed documentation and present the results of the work in writing and in public. Learn to work together in a development team, share work effectively and exchange ideas.

A 63 61.76 B 17 16.67 C 9 8.82 D 6 5.88 E 3 2.94 FX 4 3.92 102 6
14691511 B PSDU ÚINF/PSDU/24 Case studies in data mining 3 Evaluation Practice 2 28 (neurčené štúdium, iné N st., denná forma) Z doc. RNDr. Ľubomír Antoni, PhD. 15.10.2024 19.03.2024 ÚINF/PSDU/16 ÚINF/PSDU/16 - Case studies in data mining PSDU - Case studies in data mining Practice 2 28 prezenčná 14686129 ÚINF/PSDU/16 PSDU Case studies in data mining B 1260 ADUIm Data Science and Artificial Intelligence Z 1 present 1 1241 EraPF Erasmus - Faculty of Science Z -1 present 515 Fm Physics Z 1 present 1 1342 AIm aplikovaná informatika Z 2 present 3 516 Im Informatics Z 2 present 3 516 Im Informatics Z 1 present 1 II., N present true 5017536 1 P lecturer Ľubomír Antoni doc. RNDr. Ľubomír Antoni, PhD. lubomir.antoni@upjs.sk Slovak 5017536 2 C instructor Ľubomír Antoni doc. RNDr. Ľubomír Antoni, PhD. lubomir.antoni@upjs.sk Slovak SK Slovak Slovak <_L_> Recommended literature

[1] Watt, J., Borhani, R., Katsaggelos, A.K.: Machine learning refined: foundations, algorithms, and applications. Cambridge: Cambridge University Press, 2016.

[2] Zhao, Y., Cen, Y.: Data Mining Applications with R. Elsevier Inc. 2014.

[3] Han, J. and Kamber, M.: Data Mining Concepts and Techniques. 3rd Edition, Morgan Kaufmann, Burlington, 2011.

[4] Witten, I.E., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, Elsevier, 2005.

<_PA_> Conditions for completion of course

The realization of a project focused on case studies in data mining.

Successful completion of the written and oral part of the exam focused on case studies in data mining.

<_PJ_> Language, which knowledge is needed to pass the course

Slovak or English

<_SO_> Brief outline of the course

1. Basic notions in data mining

2. Data preparation in data mining

3. Methods and algorithms of data mining

4. Methods and algorithms of data mining II

5. Extraction of knowledge from large data volumes

6. Case study analysis using data mining methods in different application areas

7. Case study analysis using data mining methods in different application areas II

8. Application of methods for automated analysis of large data volumes

9. Solving practical tasks using appropriate software tools

10. Solving practical tasks using appropriate software tools II

11. Solving practical tasks using appropriate software tools III

12. Testing data mining algorithms

13. Testing data mining algorithms II

<_VV_> Learning outcomes

Solving practical tasks in the field of data mining. Basic concepts of data mining. Knowledge of data mining methods.

A 63 96.92 B 2 3.08 C 0 0.0 D 0 0.0 E 0 0.0 FX 0 0.0 65 6
14681912 B PSIN ÚINF/PSIN/15 Computer network Internet 5 Continuous assessment with examination Lecture / Practice 3 / 1 42 / 14 (neurčené štúdium, iné N st., denná forma) L RNDr. Peter Gurský, PhD., RNDr. Richard Staňa 15.10.2024 04.01.2022 ÚINF/PAZ1a/15 or ÚINF/PRG1/15 ÚINF/PAZ1a/15 - Programming, algorithms, and complexity or ÚINF/PRG1/15 - Programming in Python I PAZ1a - Programming, algorithms, and complexity or PRG1 - Programming in Python I ÚINF/PSIN/13 ÚINF/PSIN/13 - Computer network Internet PSIN - Computer network Internet Lecture 3 42 prezenčná Practice 1 14 prezenčná 14681328 ÚINF/PAZ1a/15 PAZ1a Programming, algorithms, and complexity andlebo 14681733 ÚINF/PRG1/15 PRG1 Programming in Python I 14679886 ÚINF/PSIN/13 PSIN Computer network Internet B 853 BASInfb British and American Studies - Computer Science L 2 present 4 10 Ib Informatics L 1 present 2 1241 EraPF Erasmus - Faculty of Science L -1 present 525 FIb Physics and Informatics L 2 present 4 527 CHIb Chemistry and Informatics L 2 present 4 943 NjInfb German Language and Literature - Computer Science L 2 present 4 521 MIb Mathematics and Informatics L 2 present 4 1259 ADUIb Data Science and Artificial Intelligence L 2 present 4 1259 ADUIb Data Science and Artificial Intelligence L 3 present 6 531 BIb Biology and Informatics L 2 present 4 816 AIb Applied Informatics L 1 present 2 529 GIb Geography and Informatics L 2 present 4 854 SjInfb Slovak Language and Literature - Computer Science L 2 present 4 I., N present true 3523 1 P lecturer Peter Gurský RNDr. Peter Gurský, PhD. peter.gursky@upjs.sk Slovak 5173238 2 C instructor Richard Staňa RNDr. Richard Staňa richard.stana@upjs.sk Slovak SK Slovak Slovak <_L_> Recommended literature

1. J. F. Kurose, Keith W. Ross: Computer Networking: A Top-Down Approach, 7. edition, 2016

2. A. S. Tanenbaum: Computer Networks, 5. edition, Pearson, 2010

3. W. Stallings: Local and Metropolitan Area Networks, Prentice Hall, 2000

4. E. Comer, R.E. Droms: Computer Networks and Internets, Prentice Hall, 2003

5. W. R. Stevens: TCP/IP Illustrated, Vol.1: The Protocols, Addison-Wesley, 1994

<_PA_> Conditions for completion of course

Activity at excercises (max 18 points), home work (max 18 points), test (max 30 points).

Verbal exam (min 25 points, max 50 points). Required minimum for passing the course is 55 points.

<_PJ_> Language, which knowledge is needed to pass the course

Slovak or English

<_PZ_> Notes

Content prerequisities: basic programming skills in Java

<_SO_> Brief outline of the course

1. Introduction to computer networks, internet connection types, delay and loss in packet-switched networks, ISO OSI reference model and TCP/IP protocols family.

2. Application layer: Web and HTTP, protocol FTP ,e-mail and protocols SMTP, POP3, IMAP,

3. Application layer: domain names and DNS, Peer-to-peer applications. Security in computer networks.

4. Transport layer: services, multiplexing and demultiplexing, protocol UDP, reliable data transfer

5. Transport layer: connection oriented transport protocol TCP, flow and congestion control.

6. Network Layer: Internet protocol IPv4, virtual circuit and datagram networks, packet fragmentation, routing table, application protocol DHCP

7. Network Layer: network address translation NAT, ICMP protocol, internet protocol IPv6

8. Network Layer: routing algorithms and protocols, broadcast and multicast routing

9. Link layer: error detection, multiple access methods CSMA/CD and CSMA/CA, Ethernet, frames, protocols ARP and RARP, link layer addressing

10. Link Layer and wireless and mobile networks: hub, switch, virtual LAN, 802.11 Wireless LAN, Bluetooth 802.15, WiMAX 802.16, Mobile IP, mobility in GSM

11. Physical Layer: Communication channels parameters, digital and analog encoding.

<_URL_> Course web page URL

https://siete.ics.upjs.sk/

<_VV_> Learning outcomes

Students will get the informations about principles and achitecture of Internet. They will understand the principles of ISO/OSI layers reference model for network communication. They will understand the meaning and usage of terms protocol, service, interface. They will analyze the parameters of communication channels, understand the function of interconnection devices (hub, switch, router). They will understand the structure of IP packets, addressing and how packets are transmitted, the principle of routing protocols and the creation of routing tables. They will understand the priciples of acknowledged TCP transport transmission and its implementation. They will know how to use the interface of UDP and TCP protocols in a program code. They will understand the basic application protocols of the Internet.

A 34 10.76 B 27 8.54 C 62 19.62 D 63 19.94 E 95 30.06 FX 35 11.08 316 6
14690161 B SPP1b ÚINF/SPP1b/22 Programming environments in schools II 4 Evaluation Lecture / Practice 2 / 2 28 / 28 (neurčené štúdium, iné N st., denná forma) Z doc. RNDr. Ľubomír Šnajder, PhD. 15.10.2024 08.02.2022 ÚINF/SPP1a/15 ÚINF/SPP1a/15 - Programming environments in schools I SPP1a - Programming environments in schools I ÚINF/SPP1b/15 ÚINF/SPP1b/15 - Programming environments in schools II SPP1b - Programming environments in schools II Lecture 2 28 prezenčná Practice 2 28 prezenčná 14683649 ÚINF/SPP1a/15 SPP1a Programming environments in schools I 14683650 ÚINF/SPP1b/15 SPP1b Programming environments in schools II B 531 BIb Biology and Informatics Z 3 present 5 853 BASInfb British and American Studies - Computer Science Z 3 present 5 1241 EraPF Erasmus - Faculty of Science Z -1 present 525 FIb Physics and Informatics Z 3 present 5 529 GIb Geography and Informatics Z 3 present 5 521 MIb Mathematics and Informatics Z 3 present 5 943 NjInfb German Language and Literature - Computer Science Z 3 present 5 527 CHIb Chemistry and Informatics Z 3 present 5 854 SjInfb Slovak Language and Literature - Computer Science Z 3 present 5 I., N present true 5000082 1 P lecturer Ľubomír Šnajder doc. RNDr. Ľubomír Šnajder, PhD. lubomir.snajder@upjs.sk Slovak 5000082 2 C instructor Ľubomír Šnajder doc. RNDr. Ľubomír Šnajder, PhD. lubomir.snajder@upjs.sk Slovak SK Slovak Slovak <_L_> Recommended literature

BELL, Charles A., 2017. Micropython for the internet of things: a beginner's guide to programming with Python on microcontrollers. New York, NY: Springer Science+Business Media. ISBN 9781484231227.

GUTSCHANK, Jörg et al., 2019. Coding in STEM Education [online]. Berlin: Science on Stage Deutschland e.V., 76 p. [cited 2021-7-10]. ISBN 978-3-942524-58-2. Available from: https://www.science-on-stage.eu/sites/default/files/material/coding_in_stem_education_en_2nd_edition.pdf

ŠNAJDER, Ľubomír, Gabriela LOVÁSZOVÁ, Viera MICHALIČKOVÁ and Ján GUNIŠ, 2020. Programovanie mobilných zariadení [online]. Bratislava: Centrum vedecko-technických informácií SR, 300 p. [cited 2020-11-30]. ISBN 978-80-89965-63-2. Available from: https://registracia.itakademia.sk/media/themes/nip-pmz.pdf

WOLBER, David, 2014. App Inventor: Vytvořte si vlastní aplikaci pro Android. Brno: Computer Press. ISBN 978-80-251-4195-3.

LOVÁSZOVÁ, Gabriela, Jana GALBAVÁ, Viera PALMÁROVÁ and Monika TOMCSÁNYIOVÁ, 2010. Ďalšie vzdelávanie učiteľov základných škôl a stredných škôl v predmete informatika: Malé programovacie jazyky. Bratislava: Štátny pedagogický ústav. ISBN 978–80–8118–066–8.

CODE.ORG. Learn today, build a brighter tomorrow.

Code.org [online]. [cited 2021-7-13]. Available from: https://code.org/

THE LIFELONG KINDERGARTEN GROUP AT MIT MEDIA LAB. Scratch - Imagine, Program, Share [online]. [cited 2021-7-13]. Available from: https://scratch.mit.edu/

MASSACHUSETTS INSTITUTE OF TECHNOLOGY. MIT App Inventor

Explore MIT App Inventor [online]. [cited 2021-7-13]. Available from: http://appinventor.mit.edu/

MICRO:BIT EDUCATIONAL FOUNDATION. BBC micro:bit [online]. [cited 2021-7-13]. Available from: https://microbit.org/

SPY O.Z. Učíme s Hardvérom [online]. [cited 2021-7-13]. Available from: https://www.ucimeshardverom.sk/

<_PA_> Conditions for completion of course

Conditions for ongoing evaluation:

1. Educational software or game programmed in the Scratch environment,

2. A programming etude created for learning of programming in the MIT App Inventor environment.

3. Educational or assistive software programmed in the MIT App Inventor environment.

4. A programmed project using the BBC micro: bit kit.

Conditions for successful completion of the course:

Obtaining at least 50% of points for ongoing assignments.

<_PJ_> Language, which knowledge is needed to pass the course

Slovak or English

<_PZ_> Notes

By default, teaching is carried out face to face. If this is not possible (eg due to a pandemic), teaching is provided at a distance through video conferencing programs and LMS.

<_SO_> Brief outline of the course

1. Teaching algorithmization and programming in primary and secondary school - objectives, content, textbooks and methodological materials. Algorithmic computer games.

2. Programming in the Scratch environment.

3. Programming in the Scratch environment.

4. Programming in the Scratch environment.

5. Programming of mobile devices in the MIT App Inventor environment.

6. Programming of mobile devices in the MIT App Inventor environment.

7. Programming of mobile devices in the MIT App Inventor environment.

8. Programming of mobile devices in the MIT App Inventor environment.

9. Programming of mobile devices in the MIT App Inventor environment.

10. Programming BBC micro: bit kits in MS MakeCode environment.

11. Programming BBC micro: bit kits in MS MakeCode environment.

12. Overview of educational programming initiatives and development environments.

<_VV_> Learning outcomes

After completing this course, students are able to:

a) get an overview of educational programming environments,

b) acquire programming skills in selected educational programming environments,

c) develop the ability to design and program educational software for devices using their sensors and actuators.

A 11 32.35 B 7 20.59 C 5 14.71 D 7 20.59 E 1 2.94 FX 3 8.82 34 6
14687220 B TSD ÚINF/TSD/19 Technologies of big data processing 2 Evaluation Practice 2 28 (neurčené štúdium, iné N st., denná forma) L Bc. Marián Dvorský, doc. RNDr. Ľubomír Antoni, PhD. 15.10.2024 04.01.2022 Practice 2 28 prezenčná B 1241 EraPF Erasmus - Faculty of Science L -1 present 816 AIb Applied Informatics L 3 present 6 1259 ADUIb Data Science and Artificial Intelligence L 3 present 6 I., N present true 5006951 1 C instructor Marián Dvorský Bc. Marián Dvorský Slovak 5017536 2 C instructor Ľubomír Antoni doc. RNDr. Ľubomír Antoni, PhD. lubomir.antoni@upjs.sk Slovak SK Slovak Slovak <_L_> Recommended literature

1. KLEPPMANN, Martin. Designing data-intensive applications: the big ideas behind reliable, scalable, and maintainable systems. Beijing: O'Reilly, 2017. ISBN 978-1-449-37332-0.

2. WHITE, Tom. Hadoop: the definitive guide. 3rd ed. Sebastopol: O'Reilly, 2012. ISBN 978-1-449-31152-0.

3. MARZ, Nathan a James WARREN. Big data: principles and best practices of scalable real-time data systems. Shelter Island, NY: Manning, [2015]. ISBN 978-1-617290-34-3.

4. PENTREATH, Nick. Machine Learning with Spark; Packt Publishing, [2015]. ISBN 978-1-783288-51-9.

<_PA_> Conditions for completion of course

Active participation, written test, class project.

<_PJ_> Language, which knowledge is needed to pass the course

Slovak or English

<_PZ_> Notes

Content prerequisities: database basics, Python programming

<_SO_> Brief outline of the course

1. Introduction to Big Data processing. Freely accessible datasets.

2. Cloud environment.

3. Distributed file systems, object storage. Data formats.

4. Scalability, hashing, data sharding.

5. Distributed databases, consistency trade-offs. NoSQL.

6. Batch data processing: MapReduce

7. Batch data processing: Spark I

8. Batch data processing: Spark II

9. Stream data processing: Kafka

10. Stream data processing: Beam

11. Distributed neural network training.

<_VV_> Learning outcomes

Practical experience with modern Big Data processing and storage systems. Introduction to their architecture and implementation.

A 13 100.0 B 0 0.0 C 0 0.0 D 0 0.0 E 0 0.0 FX 0 0.0 13 6
14681343 B TVY ÚINF/TVY/15 Computability theory 4 Examination Lecture / Practice 2 / 1 28 / 14 (neurčené štúdium, iné N st., denná forma) Z doc. RNDr. Ľubomír Antoni, PhD. 15.10.2024 04.01.2022 ÚINF/TVY/10 ÚINF/TVY/10 - Computability theory TVY - Computability theory Lecture 2 28 prezenčná Practice 1 14 prezenčná 14676251 ÚINF/TVY/10 TVY Computability theory B 531 BIb Biology and Informatics Z 3 present 5 853 BASInfb British and American Studies - Computer Science Z 3 present 5 796 BImu Biology and Informatics Z 1 present 1 801 GImu Geography and Informatics Z 1 present 1 511 Mb Mathematics Z 3 present 5 808 MImu Mathematics and Informatics Z 1 present 1 1131 AjInfm Teaching of English Language and Literature and Computer Science Z 1 present 1 999 EFMb Economic and Financial Mathematics Z 3 present 5 1346 MEMb matematika - ekonomické a matematické modelovanie Z 3 present 5 1241 EraPF Erasmus - Faculty of Science Z -1 present 525 FIb Physics and Informatics Z 3 present 5 803 CHImu Chemistry and Informatics Z 1 present 1 10 Ib Informatics Z 3 present 5 1103 SjInfm Teaching of Slovak Language and Literature and Computer Science Z 1 present 1 529 GIb Geography and Informatics Z 3 present 5 521 MIb Mathematics and Informatics Z 3 present 5 943 NjInfb German Language and Literature - Computer Science Z 3 present 5 800 FImu Physics and Informatics Z 1 present 1 1146 NjInfm Teaching of German Language and Literature and Computer Science Z 1 present 1 527 CHIb Chemistry and Informatics Z 3 present 5 854 SjInfb Slovak Language and Literature - Computer Science Z 3 present 5 I., II., N present true 5017536 1 P lecturer Ľubomír Antoni doc. RNDr. Ľubomír Antoni, PhD. lubomir.antoni@upjs.sk Slovak 5017536 2 C instructor Ľubomír Antoni doc. RNDr. Ľubomír Antoni, PhD. lubomir.antoni@upjs.sk Slovak SK Slovak Slovak <_L_> Recommended literature

1. BRIDGES, Douglas. Computability, A Mathematical Sketch book. Springer--Verlag, 1994. ISBN:: 978-0387941745

2. BUKOVSKÝ, Lev. Teória algoritmov, ES UPJŠ, Košice, 1999. ISBN 8070973730

3. MACHTEY, Michael a Paul YOUNG. An Introduction to the General Theory of Algorithms, North--Holland, Amsterdam 1978.

4. KRAJČI, Stanislav. Teória vypočítateľnosti. http://ics.upjs.sk/~krajci/skola/vyucba/ucebneTexty/vypocitatelnost.pdf

<_PA_> Conditions for completion of course

Two written examinations focused on the construction of Turing machines, creating sequences of (primitive) recursive functions, solving examples. Oral exam focused on the relationship between classes of recursive and computable functions, the problem of stopping a Turing machine.

<_PJ_> Language, which knowledge is needed to pass the course

Slovak

<_SO_> Brief outline of the course

1. Turing machine, basic principles of work of Turing machine, formalization of basic notions

2. Shifting of states, compositions of machines, computations on composed machines

3. Modifications of configuration

4. Elementary Turing machines

5. Compositions of elementary Turing machines

6. Primitively recursive functions

7. Primitively recursive predicates

8. Functions and predicates from number theory

9. Goedelian arithmetizationa of Turing computability

10. Recursive functions

11. Relationship of recursivity and Turing computability

12. Halting problem

<_URL_> Course web page URL

https://ics.upjs.sk/~krajci/skola/vyucba/jesen/predmety/TVY.html

<_VV_> Learning outcomes

Knowledge of computational model of Turing machine, Goedelian arithmetization, and relationship between Turing computability and recursivity of functions.

A 176 53.17 B 37 11.18 C 37 11.18 D 16 4.83 E 17 5.14 FX 48 14.5 331 6
14681952 B TYS1 ÚINF/TYS1/15 Typographical systems 2 Evaluation Practice 2 28 (neurčené štúdium, iné N st., denná forma) L prof. RNDr. Stanislav Krajči, PhD. 15.10.2024 08.01.2022 ÚINF/TYS1/06 ÚINF/TYS1/06 - Typographical systems TYS1 - Typographical systems Practice 2 28 prezenčná 6106203 ÚINF/TYS1/06 TYS1 Typographical systems B 525 FIb Physics and Informatics L 3 present 6 529 GIb Geography and Informatics L 3 present 6 854 SjInfb Slovak Language and Literature - Computer Science L 3 present 6 943 NjInfb German Language and Literature - Computer Science L 3 present 6 1241 EraPF Erasmus - Faculty of Science L -1 present 10 Ib Informatics L 3 present 6 531 BIb Biology and Informatics L 3 present 6 816 AIb Applied Informatics L 3 present 6 1346 MEMb matematika - ekonomické a matematické modelovanie L 2 present 4 999 EFMb Economic and Financial Mathematics L 2 present 4 853 BASInfb British and American Studies - Computer Science L 3 present 6 521 MIb Mathematics and Informatics L 3 present 6 527 CHIb Chemistry and Informatics L 3 present 6 816 AIb Applied Informatics L 2 present 4 511 Mb Mathematics L 2 present 4 10 Ib Informatics L 2 present 4 I., N present true 5000404 1 C instructor Stanislav Krajči prof. RNDr. Stanislav Krajči, PhD. stanislav.krajci@upjs.sk Slovak SK Slovak Slovak <_L_> Recommended literature

1. D. E. Knuth, The TeXbook, Computers and Typesetting, Addison-Wesley, Reading, Massachusetts, 1986.

2. M. Doob, Jemný úvod do TeXu, CSTUG, 1990; èeský preklad z "A Gentle Introduction to TeX” (text vo¾ne prístupný v CTAN archíve).

3. O. Ulrych, AMS-TeX za 59 minút, (verzia 1.0), Praha, 1989.

4. J. Chlebíková, AMS-TeX (verzia 2.0), Bratislava, 1992.

5. M. Spivak, The Joy of TeX, Amer. Math. Soc., 1986.

6. L. Lamport, LaTeX: A Document Preparation System, Addison-Wesley, Massachusetts, 1986.

7. L. Lamport, MakeIndex: An index processor for LaTeX, 17 February 1987.

8. J. Rybièka, LaTeX pro začátečníky, Konvoj, Brno, 1995.

9. H. Partl, E. Schlegl, I. Hyna, P. Sýkora, LaTeX – Stručný popis.

10. T. Oetiker, H. Partl, I. Hyna, E. Schlegl, M. Kocer, P. Sýkora, Ne příliš stručný úvod do systému LaTeX2e (neboli LaTeX2e v 73 minutách).

11. M. Goossens, F. Mittelbach, and A. Samarin, The LaTeX Companion, Addison-Wesley, Reading, Massachusetts, 1994. Kapitola 8 je volne prístupná v TeX archívoch (ch8.pdf). 4

12. G. Grätzer, Math into LaTeX, 3rd edition, Birkhäuser, Boston, 2000.

<_PA_> Conditions for completion of course

Satisfiable ability to correct mainly mathematical typesetting.

<_PJ_> Language, which knowledge is needed to pass the course

Slovak.

<_SO_> Brief outline of the course

1. Principles for typesetting of documents containing mathematical formulas.

2. Typesetting of a plain text, special text symbols, using of text fonts.3

3. TeX macros.

4. Enumerations in text and footnote command. Parameter setting determining the appearance of the pages.

5. Typesetting of mathematical formulas in text and displays, aligning formulas.

6. Making tables and pictures.

7. Definitions, theorems, and proofs in a mathematical document.

8. Contents, bibliography, sections in a document.

9. Pictures.

10.-12. Project.

<_URL_> Course web page URL

https://ics.upjs.sk/~krajci/skola/vyucba/jar/predmety/tex/tex.html

<_VV_> Learning outcomes

To provide the basic information on principles for typesetting of documents containing mathematical formulas.

A 132 50.0 B 45 17.05 C 52 19.7 D 16 6.06 E 17 6.44 FX 2 0.76 264 6
14691500 B UKN ÚINF/UKN/24 Introduction to cognitive and neural sciences 5 Examination Lecture / Practice 2 / 2 28 / 28 (neurčené štúdium, iné N st., denná forma) Z doc. Ing. Norbert Kopčo, PhD., univerzitný profesor, Ing. Peter Lokša, PhD., RNDr. Keerthi Kumar Doreswamy, PhD., Ing. Udbhav Singhal, Myroslav Fedorenko 15.10.2024 19.03.2024 ÚINF/MTL/22 ÚINF/MTL/22 - MATLAB and neurocognition MTL - MATLAB and neurocognition ÚINF/VKN1/22 ÚINF/VKN1/22 - Computational and cognitive neuroscience I VKN1 - Computational and cognitive neuroscience I Lecture 2 28 prezenčná Practice 2 28 prezenčná 14690646 ÚINF/MTL/22 MTL MATLAB and neurocognition 14690177 ÚINF/VKN1/22 VKN1 Computational and cognitive neuroscience I B 531 BIb Biology and Informatics Z 3 present 5 853 BASInfb British and American Studies - Computer Science Z 3 present 5 854 SjInfb Slovak Language and Literature - Computer Science Z 2 present 3 1259 ADUIb Data Science and Artificial Intelligence Z 2 present 3 1342 AIm aplikovaná informatika Z 1 present 1 525 FIb Physics and Informatics Z 2 present 3 10 Ib Informatics Z 2 present 3 1241 EraPF Erasmus - Faculty of Science Z -1 present 525 FIb Physics and Informatics Z 3 present 5 1259 ADUIb Data Science and Artificial Intelligence Z 3 present 5 816 AIb Applied Informatics Z 2 present 3 10 Ib Informatics Z 3 present 5 531 BIb Biology and Informatics Z 2 present 3 816 AIb Applied Informatics Z 3 present 5 527 CHIb Chemistry and Informatics Z 2 present 3 529 GIb Geography and Informatics Z 3 present 5 521 MIb Mathematics and Informatics Z 2 present 3 521 MIb Mathematics and Informatics Z 3 present 5 943 NjInfb German Language and Literature - Computer Science Z 3 present 5 527 CHIb Chemistry and Informatics Z 3 present 5 529 GIb Geography and Informatics Z 2 present 3 853 BASInfb British and American Studies - Computer Science Z 2 present 3 854 SjInfb Slovak Language and Literature - Computer Science Z 3 present 5 943 NjInfb German Language and Literature - Computer Science Z 2 present 3 I., II., N present true 5135313 1 P lecturer Norbert Kopčo doc. Ing. Norbert Kopčo, PhD., univerzitný profesor norbert.kopco@upjs.sk English, Slovak 5135313 2 C instructor Norbert Kopčo doc. Ing. Norbert Kopčo, PhD., univerzitný profesor norbert.kopco@upjs.sk English, Slovak 5166178 3 C instructor Peter Lokša Ing. Peter Lokša, PhD. peter.loksa@upjs.sk English, Slovak 5234490 4 C instructor Keerthi Kumar Doreswamy RNDr. Keerthi Kumar Doreswamy, PhD. keerthi.kumar.doreswamy@upjs.sk English, Slovak 5356972 5 C instructor Udbhav Singhal Ing. Udbhav Singhal udbhav.singhal@student.upjs.sk English, Slovak 5389940 6 C instructor Myroslav Fedorenko Myroslav Fedorenko myroslav.fedorenko@student.upjs.sk English, Slovak EN English SK Slovak English, Slovak <_L_> Recommended literature

1. Poeppel D., Mangun G., Gazzaniga M. (ed.): The Cognitive Neurosciences. 6th ed. MIT Press. 2020. ISBN-13: 978-0262043250

2. Dayan P and LF Abbott: Theoretical Neuroscience - Computational and Mathematical Modeling of Neural Systems. MIT Press, 2005 ISBN-13: 978-0262541855

3. Thagard P: Mind: Introduction to Cognitive Science, 2nd Edition. Bradford Books. ISBN-13 ‏ : ‎ 978-0262701099

<_PA_> Conditions for completion of course

Midterm exam

Final exam consisting of written and/or oral part

<_PJ_> Language, which knowledge is needed to pass the course

Slovak or English

<_PZ_> Notes

Content prerequisites:

Algebra, programming (Matlab).

<_SO_> Brief outline of the course

1. Intro to neural and cognitive science

2. Overview of anatomy and physiology of the central nervous system (CNS)

3. Methods of study in neuroscience. Sensory, motor and associative brain areas.

4. Neuron: anatomy, types, action potential

5. Propagation of signals in the neuron, neural coding.

6. Synaptic transmission and plasticity - neural basis of learning and memory.

7. Psychology of memory and learning.

8. Vision: Intro. Perception of brightness, edges, color. Model BCS/FCS. Perception of size and sitance.

9. Hearing and auditory cognition.

10. Language, psycholinguistics, speech perception and production.

11. Attention.

12. Crossmodal interaction (vision, hearing, touch).

13. Reasoning and decision making.

<_URL_> Course web page URL

https://pcl.upjs.sk/unv_eng/

<_VV_> Learning outcomes

Overview anatomy, physiology, and cognitive processes in the human brain with focus on computational aspects of cognition and computational tools used in neuroscience.

A 4 44.44 B 0 0.0 C 1 11.11 D 0 0.0 E 4 44.44 FX 0 0.0 9 6
14681929 B UNS1 ÚINF/UNS1/15 Introduction to neural networks 5 Examination Lecture / Practice 2 / 2 28 / 28 (neurčené štúdium, iné N st., denná forma) Z doc. RNDr. Ľubomír Antoni, PhD., RNDr. Šimon Horvát, PhD. 15.10.2024 23.11.2021 ÚINF/UNS1/04 ÚINF/UNS1/04 - Introduction to neural networks UNS1 - Introduction to neural networks Lecture 2 28 prezenčná Practice 2 28 prezenčná 6102852 ÚINF/UNS1/04 UNS1 Introduction to neural networks B 854 SjInfb Slovak Language and Literature - Computer Science Z 2 present 3 525 FIb Physics and Informatics Z 2 present 3 10 Ib Informatics Z 2 present 3 1241 EraPF Erasmus - Faculty of Science Z -1 present 1259 ADUIb Data Science and Artificial Intelligence Z 3 present 5 816 AIb Applied Informatics Z 2 present 3 531 BIb Biology and Informatics Z 2 present 3 816 AIb Applied Informatics Z 3 present 5 527 CHIb Chemistry and Informatics Z 2 present 3 521 MIb Mathematics and Informatics Z 2 present 3 529 GIb Geography and Informatics Z 2 present 3 853 BASInfb British and American Studies - Computer Science Z 2 present 3 943 NjInfb German Language and Literature - Computer Science Z 2 present 3 I., N present true 5017536 1 P lecturer Ľubomír Antoni doc. RNDr. Ľubomír Antoni, PhD. lubomir.antoni@upjs.sk Slovak 5173953 2 C instructor Šimon Horvát RNDr. Šimon Horvát, PhD. simon.horvat@upjs.sk Slovak SK Slovak Slovak <_L_> Recommended literature

1. AGGARWAL, Charu C. Neural networks and deep learning: a textbook. Cham: Springer, 2018. ISBN 978-3319944623.

2. KVASNIČKA, Vladimír. Úvod do teórie neurónových sietí. [Slovenská republika]: IRIS, 1997. ISBN 80-88778-30-1.

3. KVASNIČKA, Vladimír. Evolučné algoritmy. Bratislava: Vydavateľstvo STU, 2000. Edícia vysokoškolských učebníc. ISBN 80-227-1377-5.

4. MITCHEL, Melanie. An Introduction to Genetic Algorithms. Cambridge: MIT Press, 2002. ISBN 0-262-63185-7.

5. SINČÁK, Peter, ANDREJKOVÁ, G. Úvod do neurónových sietí, I. diel, Košice: ELFA, 1996. ISBN 808878638X

<_PA_> Conditions for completion of course

The condition for passing the course is the realization of a project with the application of neural networks, successful completion of two written tests in the field of neural networks, their basic types, and genetic algorithms, as well as successful completion of the written and oral part of the exam.

<_PJ_> Language, which knowledge is needed to pass the course

Slovak or English

<_PZ_> Notes

Content prerequisites:

Basics of programming in Python, or another alternative programming language suitable for data analysis

<_SO_> Brief outline of the course

1. Basic concept arising from biology. Linear threshold units, polynomial threshold units, functions calculable by threshold units.

2. Perceptrons. Linear separable objects, adaptation process (learning), convergence of perceptron learning rule, higher order perceptrons.

3. Forward neural networks, hidden neurons, adaptation process (learning), backpropagation method.

4. Recurrent neural networks. Hopfield neural networks, properties, associative memory model, energy function, learning, optimization problems (business traveler problem).

5. Model of gradually created network. ART network, architecture, operations, initialization phase, recognition phase, search and adaptation phase. Use of the ART network.

6. Applications of studied models in solving practical problems.

7. Written test I.

8. Motivation to model genetic elements. Genetic algorithm. Application of genetic algorithms.

9. Genetic programming, root trees, Read's linear code. Basic stochastic optimization algorithms: blind algorithm and climbing algorithm. Forbidden search method.

10. Genetic and evolutionary programming with typing, examples of use. Grammatical evolution.

11. Special techniques of evolutionary computations. Selection mechanisms in evolutionary algorithms.

12. Use of genetic algorithms in training neural networks. Artificial life.

13. Written test II.

<_VV_> Learning outcomes

The result of the education is an understanding of the basic principles of neural networks and genetic algorithms. The student will gain the ability to apply the acquired knowledge in intelligent data analysis and also work with a selected tool for modeling neural networks.

A 129 24.11 B 91 17.01 C 108 20.19 D 88 16.45 E 100 18.69 FX 19 3.55 535 6
14687218 B USU ÚINF/USU/19 Introduction to machine learning 5 Continuous assessment with examination Lecture / Practice 2 / 2 28 / 28 (neurčené štúdium, iné N st., denná forma) Z doc. RNDr. Ľubomír Antoni, PhD. 15.10.2024 20.09.2021 Lecture 2 28 prezenčná Practice 2 28 prezenčná B 1259 ADUIb Data Science and Artificial Intelligence Z 2 present 3 511 Mb Mathematics Z 3 present 5 1346 MEMb matematika - ekonomické a matematické modelovanie Z 3 present 5 1241 EraPF Erasmus - Faculty of Science Z -1 present I., N present true 5017536 1 P lecturer Ľubomír Antoni doc. RNDr. Ľubomír Antoni, PhD. lubomir.antoni@upjs.sk Slovak 5017536 2 C instructor Ľubomír Antoni doc. RNDr. Ľubomír Antoni, PhD. lubomir.antoni@upjs.sk Slovak SK Slovak Slovak <_L_> Recommended literature

1. AGGARWAL, Charu C. Data mining: a textbook. Cham: Springer, 2015. ISBN 978-3-319-14141-1.

2. ALPAYDIN, Ethem. Introduction to machine learning. 3rd ed. Massachusetts: MIT Press, 2014. ISBN 978-0-262-02818-9.

3. RASCHKA, Sebastian, Mirjalili, Vahid. Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2, 3rd Edition, Packt Publishing Ltd., 2019. ISBN 978-1789955750.

4. WITTEN, I. H., Eibe FRANK a Mark A. HALL. Data mining: practical machine learning tools and techniques. 4th ed. Amsterdam: Morgan Kaufmann, 2017. Morgan Kaufman series in data management systems. ISBN 9780128042915.

<_PA_> Conditions for completion of course

Creating a project focused on the application of machine learning algorithms in a selected application domain. Continuous written work focused on the preparation, processing and interpretation of data using machine learning methods. Successful completion of an oral exam focused on selected machine learning methods.

<_PJ_> Language, which knowledge is needed to pass the course

Slovak or English

<_PZ_> Notes

Content prerequisites:

Basics of programming in Python, or another alternative programming language suitable for data analysis

<_SO_> Brief outline of the course

1. Basic concepts of machine learning.

2. Basic characteristics of data, types of attributes, characteristics for individual attributes, dependence between attributes.

3. Data sources and their acquisition. Determining the target task.

4. Preparation and cleaning of data, missing values, incorrect inputs.

5. Classification tasks

6. Selected classification methods

7. Evaluation of models - true positive, false positive, true negative, false negative examples.

8. Classification accuracy indicators.

9. Cluster analysis.

10. Association rules.

11. Prediction tasks and selected prediction methods

12. Prediction accuracy indicators.

<_VV_> Learning outcomes

Theoretical knowledge in the area of machine learning. Basic concepts of machine learning. Basic machine learning algorithms.

A 41 87.23 B 2 4.26 C 2 4.26 D 2 4.26 E 0 0.0 FX 0 0.0 47 6
14682030 B VYZ1 ÚINF/VYZ1/15 Computational complexity 4 Examination Lecture 2 28 (neurčené štúdium, iné N st., denná forma) Z prof. RNDr. Viliam Geffert, DrSc. 15.10.2024 23.11.2021 ÚINF/VYZ1/04 ÚINF/VYZ1/04 - Computational complexity VYZ1 - Computational complexity Lecture 2 28 prezenčná 6103220 ÚINF/VYZ1/04 VYZ1 Computational complexity B 800 FImu Physics and Informatics Z 2 present 3 808 MImu Mathematics and Informatics Z 2 present 3 1260 ADUIm Data Science and Artificial Intelligence Z 1 present 1 803 CHImu Chemistry and Informatics Z 2 present 3 1146 NjInfm Teaching of German Language and Literature and Computer Science Z 2 present 3 1241 EraPF Erasmus - Faculty of Science Z -1 present 1103 SjInfm Teaching of Slovak Language and Literature and Computer Science Z 2 present 3 1131 AjInfm Teaching of English Language and Literature and Computer Science Z 2 present 3 1347 MOm matematická optimalizácia Z 2 present 3 796 BImu Biology and Informatics Z 2 present 3 801 GImu Geography and Informatics Z 2 present 3 516 Im Informatics Z 1 present 1 II., N present true 5000055 1 P lecturer Viliam Geffert prof. RNDr. Viliam Geffert, DrSc. viliam.geffert@upjs.sk Slovak SK Slovak Slovak <_L_> Recommended literature

1. J.E. Hopcroft, R.Motwani, J.D. Ullman: Introduction to automata theory, languages, and computation, Addison-Wesley, 2007.

2. M. Sipser: Introduction to the Theory of Computation, Thomson, 2nd edition, 2006.

3. L.A.Hemaspaandra, M.Ogihara: Complexity theory companion, EATCS series, texts in computer science, Springer-Verlag, 2002.

4. S. Arora, B. Barak: Computational Complexity: A Modern Approach, Cambridge Univ. Pess, 2009. 5. G.Brassard, P.Bradley: Fundamentals of algorithmics, Prentice Hall, 1996.

6. D.P.Bovet, P.Crescenzi: Introduction to the theory of complexity, Prentice Hall, 1994.

7. C. Calude and J. Hromkovič: Complexity: A Language-Theoretic Point of View, in G. Rozenberg and A. Salomaa, Handbook of Formal Languages II, Springer, 1997.

<_PA_> Conditions for completion of course

Oral examination.

<_PJ_> Language, which knowledge is needed to pass the course

Slovak or english

<_PZ_> Notes

Content prerequisities:

Basic notions from the theory of automata and formal languages.

Basic skills in programming and design of algorithms (in any programming language).

Basics knowledge in mathematical logic, set theory, and graph theory.

<_SO_> Brief outline of the course

1: Introduction: the notion of computational complexity, computational time, computational model, example - the problem of sorting, computational complexity as an asymptotic function

2: Basic computational models: RAM and RASP computers, the cost of an elementary step on these computers, single-tape Turing machine, multi-tape Turing machine, nondeterministic variants of these computational models, transformations among these models with respect to the time complexity

3: The classes P and NP: basic definitions, presenting (un)undirected graphs on the input, 3COL – the set of all 3-colorable graphs is in NP, 2COL - the set of all 2-colorable graphs is in P, SAT – the set of satisfiable Boolean formulas is in NP, CNF-SAT - Boolean formulas in conjunctive normal form

4: Variants of P and NP: decision problem, the problem of finding a solution, optimization problem, polynomial conversions among different variants

5: NP-completeness: reducibility in polynomial time and its transitivity, definition of the NP-completeness and its basic properties

6: NP-completeness of SAT

7: Variants of SAT: 3CNF-SAT - satisfiability of Boolean formulas in 3-conjunctive normal form, kCNF-SAT, CNF-SAT - satisfiability in k-conjunctive (conjunctive) normal form, 2CNF-SAT is in P

8: 3COL and its variants: 3COL (the problem of coloring vertices of a graph with 3 colors) in NP-complete, consequently: for each k>3, kCOL (the problem of coloring with k colors) is NP-complete as well

9: Colorability of a planar graph with three colors: presenting a planar graph on the input, the proof of NP-completeness, coloring with a larger number of colors

10: Another NP-complete problems: Exact set cover, Clique, Vertex cover

11: Hamiltonian path: Hamiltonian path in a directed and in undirected graph

12: Subset-sum-like problems: Subset Sum - the problem of whether any subset of the integers sum to precisely a target sum, Partition - the problem of whether a given multiset of positive integers can be partitioned into two subsets with equal sums, a “more relaxed” version of Partition - achieving an approximate equality of the sums, distribution of tasks among K parallel processors

13: Beyond P a NP: a review of the basic complexity classes - L, NL, P, NP, PSpace , NPSpace, ExpTime, NExpTime, …, simulation of (non)deterministic space in (non)deterministic time, conversions in opposite directions

14: PSpace: QBF - true quantified Boolean formulas, prenex normal form, Pspace completeness of QBF, PSpace = NPSpace

<_VV_> Learning outcomes

To give students theoretical background in computational complexity and theory of NP-completeness.

A 229 57.25 B 61 15.25 C 53 13.25 D 28 7.0 E 28 7.0 FX 1 0.25 400 6
14687681 B ZLI ÚINF/ZLI/21 Linux basics 2 Evaluation Practice 2 28 (neurčené štúdium, iné N st., denná forma) Z doc. RNDr. JUDr. Pavol Sokol, PhD. et PhD., RNDr. Eva Marková, RNDr. Richard Staňa 15.10.2024 04.01.2022 ÚINF/POS2a/15 or ÚINF/ePOS2a/15 ÚINF/POS2a/15 - User environments of operating systems or ÚINF/ePOS2a/15 - User environments of operating systems POS2a - User environments of operating systems or ePOS2a - User environments of operating systems Practice 2 28 prezenčná 14681960 ÚINF/POS2a/15 POS2a User environments of operating systems or 14683614 ÚINF/ePOS2a/15 ePOS2a User environments of operating systems B 10 Ib Informatics Z 1 present 1 521 MIb Mathematics and Informatics Z 1 present 1 1241 EraPF Erasmus - Faculty of Science Z -1 present 1259 ADUIb Data Science and Artificial Intelligence Z 1 present 1 816 AIb Applied Informatics Z 1 present 1 525 FIb Physics and Informatics Z 1 present 1 I., N present true 10339 1 C instructor Pavol Sokol doc. RNDr. JUDr. Pavol Sokol, PhD. et PhD. pavol.sokol@upjs.sk Slovak 5201190 2 C instructor Eva Marková RNDr. Eva Marková eva.markova@upjs.sk Slovak 5173238 3 C instructor Richard Staňa RNDr. Richard Staňa richard.stana@upjs.sk Slovak SK Slovak Slovak <_L_> Recommended literature

1. LPIC-1 Exam 101. LPI [online]. Canada: The Linux Professional Institute, 2021 [cit. 2021-9-22]. Dostupné z: https://learning.lpi.org/en/learning-materials/101-500/, 2. LPIC-1 Exam 102. LPI [online]. Canada: The Linux Professional Institute, 2021 [cit. 2021-9-22]. Dostupné z: https://learning.lpi.org/en/learning-materials/102-500/, 3. Linux - Dokumentační projekt [online]. 4. Praha: Computer Press, 2007 [cit. 2021-9-22]. Dostupné z: https://i.iinfo.cz/files/root/k/LDP_4.pdf.

<_PA_> Conditions for completion of course

The condition for passing the course is: 1. Homeworks (50% of the total number of points), 2. Written final theoretical exam (25% of the total number of points), 3. Written final practical exam (25% of the total number of points).

<_PJ_> Language, which knowledge is needed to pass the course

Slovak or English

<_SO_> Brief outline of the course

1. Introduction to Unix/Linux systems, 2. Linux ommand line, 3. Text processing tools, 4. Managing files, 5. Managing users, groups and rights, 6. Managing processes, 7. Managing software and packages, 8. Administering the system - system booting, jobs, logging,9. Basic networking, 10. Managing network interfaces, 11. Managing disk partitions, 12. Exam.

<_URL_> Course web page URL

https://csl.science.upjs.sk/#/predmety/

<_VV_> Learning outcomes

The result of the education is an understanding of the theoretical and practical background for studying computer science, by giving the necessary knowledge in the usage of Unix/Linux operating systems.

A 99 41.25 B 52 21.67 C 45 18.75 D 15 6.25 E 14 5.83 FX 15 6.25 240 6